
Package: webSDM (via r-universe)
August 23, 2024

Title Including Known Interactions in Species Distribution Models

Version 1.1-5

Description A collection of tools to fit and work with trophic Species
Distribution Models. Trophic Species Distribution Models
combine knowledge of trophic interactions with Bayesian
structural equation models that model each species as a
function of its prey (or predators) and environmental
conditions. It exploits the topological ordering of the known
trophic interaction network to predict species distribution in
space and/or time, where the prey (or predator) distribution is
unavailable. The method implemented by the package is described
in Poggiato, Andréoletti, Pollock and Thuiller (2022)
<doi:10.22541/au.166853394.45823739/v1>.

License GPL-3

Encoding UTF-8

Imports GGally, abind, bayesplot, brms, broom.mixed, dismo, dplyr,
ggplot2, glmnet, gridExtra, igraph, jtools, rstanarm,
rstantools, utils

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

URL https://github.com/giopogg/webSDM,

https://giopogg.github.io/webSDM/

BugReports https://github.com/giopogg/webSDM/issues

Suggests knitr, rmarkdown, reshape2, devtools, loo, randomForest,
network, sna, scales, intergraph

VignetteBuilder knitr

Repository https://giopogg.r-universe.dev

RemoteUrl https://github.com/giopogg/websdm

RemoteRef HEAD

RemoteSha ec86bf9f60f2d58675483ce03ff21e9ca5c70c70

1

https://doi.org/10.22541/au.166853394.45823739/v1
https://github.com/giopogg/webSDM
https://giopogg.github.io/webSDM/
https://github.com/giopogg/webSDM/issues

2 buildFormula

Contents
buildFormula . 2
coef.SDMfit . 3
coef.trophicSDMfit . 4
computeVariableImportance . 5
evaluateModelFit . 7
G . 8
global . 9
loo.trophicSDMfit . 9
plot.SDMfit . 10
plot.trophicSDMfit . 11
plotG . 12
plotG_inferred . 12
predict.SDMfit . 13
predict.trophicSDMfit . 15
predictPotential . 16
print.SDMfit . 18
print.trophicSDMfit . 19
SDMfit . 20
summary.SDMfit . 22
summary.trophicSDMfit . 23
trophicSDM . 24
trophicSDM_CV . 27
X . 29
Y . 30

Index 31

buildFormula Builds SDM formulae

Description

Builds the formula of both the abiotic and biotic terms to fit a single species SDM based on the
input parameters. The function is called inside the SDMfit function

Usage

buildFormula(
form.init,
species,
sp.formula = NULL,
sp.partition = NULL,
useBRMS

)

coef.SDMfit 3

Arguments

form.init The abiotic part of the formula

species The preys (or predators) of the focal species

sp.formula optional parameter for composite variables. See ?trophicSDM

sp.partition optional parameter to specify groups of species for composite variables. See
?trophicSDM

useBRMS whether brms is used (TRUE if penal = "coeff.signs" and method = "stan_glm).

Author(s)

Giovanni Poggiato and Jérémy Andréoletti

coef.SDMfit Gets regression coefficients from a local model, i.e. a SDMfit object.

Description

Gets regression coefficients (eventually standardised) of a local model, i.e. a SDMfit object. p-
values or credible intervals are returned when available.

Usage

S3 method for class 'SDMfit'
coef(object, standardise = FALSE, level = 0.95, ...)

Arguments

object A SDMfit object, typically obtained with trophicSDM() and available in the field
$model of a trophicSDMfit object

standardise Whether to standardise regression coefficients. Default to FALSE. If TRUE,
coefficients are standardised using the latent variable standardisation (see Grace
et al. 2018) for more details.

level The confidence level of credible intervals, only available for stan_glm method.
Default to 0.95.

... additional arguments

Value

A table containing the inferred coefficients (with credible intervals or p-values when available).

Author(s)

Giovanni Poggiato

4 coef.trophicSDMfit

References

Grace, J. B., Johnson, D. J., Lefcheck, J. S., and Byrnes, J. E. K.. 2018. Quantifying relative im-
portance: computing standardized effects in models with binary outcomes. Ecosphere 9(6):e02283.

Examples

data(Y, X, G)
define abiotic part of the model
env.formula = "~ X_1 + X_2"
Run the model with bottom-up control using stan_glm as fitting method and no penalisation
m = trophicSDM(Y,X,G, env.formula, iter = 100,

family = binomial(link = "logit"), penal = NULL,
mode = "prey", method = "stan_glm")

unstandardised regression coefficients
coef(m$model$Y5)
#standardised regression coefficients with 90% credible intervals
coef(m$model$Y5, standardised = TRUE, level = 0.9)
Run the same model using glm as fitting method
(set iter = 1000 to obtain reliable results)
m = trophicSDM(Y,X,G, env.formula,

family = binomial(link = "logit"), penal = NULL,
mode = "prey", method = "glm")

Now we have p-values instead of credible intervals
coef(m$model$Y5)

Notice that unstandardised coefficients are always accessible
in the fitted model:
m$model$Y5$coef

coef.trophicSDMfit Gets regression coefficients from a fitted trophicSDM model.

Description

Gets regression coefficients (eventually standardised) of a fitted trophicSDM. p-values or credible
intervals are returned when available.

Usage

S3 method for class 'trophicSDMfit'
coef(object, standardise = FALSE, level = 0.95, ...)

Arguments

object A trophicSDMfit object obtained with trophicSDM()

standardise Whether to standardise regression coefficients. Default to FALSE. If TRUE,
coefficients are standardised using the latent variable standardisation (see Grace
et al. 2018) for more details.

computeVariableImportance 5

level The confidence level of credible intervals, only available for stan_glm method.
Default to 0.95.

... additional arguments

Value

A list containing, for each species, the inferred coefficients (with credible intervals or p-values when
available).

Author(s)

Giovanni Poggiato

References

Grace, J. B., Johnson, D. J., Lefcheck, J. S., and Byrnes, J. E. K.. 2018. Quantifying relative im-
portance: computing standardized effects in models with binary outcomes. Ecosphere 9(6):e02283.

Examples

data(Y, X, G)
define abiotic part of the model
env.formula = "~ X_1 + X_2"
Run the model with bottom-up control using stan_glm as fitting method and no penalisation
(set iter = 1000 to obtain reliable results)
m = trophicSDM(Y,X,G, env.formula, iter = 100,

family = binomial(link = "logit"), penal = NULL,
mode = "prey", method = "stan_glm")

unstandardised regression coefficients
coef(m)
#standardised regression coefficients with 90% credible intervals
coef(m, standardised = TRUE, level = 0.9)
Run the same model using glm as fitting method
m = trophicSDM(Y, X, G, env.formula,

family = binomial(link = "logit"), penal = NULL,
mode = "prey", method = "glm")

Now we have p-values instead of credible intervals
coef(m)

Notice that unstandardised coefficients are always accessible
in the fitted model:
m$coef

computeVariableImportance

Computes variable importance of (groups of) variables of fitted a
trophicSDM model.

6 computeVariableImportance

Description

Computes variable importance of (groups of) variables of fitted a trophicSDM model, for each
species. Variable importance are computed as the standardised regression coefficients (summed
across species of the same group). Standardisation is done using latent variable standardisation
described in Grace et al. 2018.

Usage

computeVariableImportance(tSDM, groups = NULL)

Arguments

tSDM A trophicSDMfit object obtained with trophicSDM()

groups A list where each element is group. Each group is specified as a vector contain-
ing species or environmental covariates names of a given group. Each element
of the list (i.e. each group) has to be named.

Value

A groups x species matrix containing variable importance for each groups of variables and each
species.

Author(s)

Giovanni Poggiato

References

Grace, J. B., Johnson, D. J., Lefcheck, J. S., and Byrnes, J. E. K.. 2018. Quantifying relative im-
portance: computing standardized effects in models with binary outcomes. Ecosphere 9(6):e02283.

Examples

data(Y, X, G)
define abiotic part of the model
env.formula = "~ X_1 + X_2"
Run the model with bottom-up control using stan_glm as fitting method and no penalisation
(set iter = 1000 to obtain reliable results)
m = trophicSDM(Y, X, G, env.formula, iter = 100,

family = binomial(link = "logit"), penal = NULL,
mode = "prey", method = "stan_glm")

#Compute the importance of each variable
computeVariableImportance(m)
#Compute the importance of three different set of variables
computeVariableImportance(m, groups =list("X" = c("X_1","X_2"),

"Ybasal" = c("Y1","Y2","Y3"),
"Ypredator"= c("Y4", "Y5", "Y6")))

evaluateModelFit 7

evaluateModelFit Evaluates prediction goodness of fit

Description

Evaluate goodness of fit by comparing a true versus a predicted dataset of species distribution.
Ypredicted is typically predicted using a prediction method of trophicSDM (in cross-validation if
trophicSDM_CV() is used).

Usage

evaluateModelFit(tSDM, Ynew = NULL, Ypredicted = NULL)

Arguments

tSDM A trophicSDMfit object obtained with trophicSDM().

Ynew A sites x species matrix containing the true species occurrences state. If set to
NULL (default), it is set to the species distribution data Y on which the model
is fitted.

Ypredicted A sites x species matrix containing the predicted species occurrences state. If
set to NULL (default), it is set to the fitted values, i.e. predictions on the dataset
used to train the model.

Value

A table specifying the goodness of fit metrics for each species. For presence-absence data, the
model computes TSS and AUC. For Gaussian data, the R2.

Author(s)

Giovanni Poggiato

References

Grace, J. B., Johnson, D. J., Lefcheck, J. S., and Byrnes, J. E. K.. 2018. Quantifying relative im-
portance: computing standardized effects in models with binary outcomes. Ecosphere 9(6):e02283.

Examples

data(Y, X, G)
define abiotic part of the model
env.formula = "~ X_1 + X_2"
Run the model with bottom-up control using stan_glm as fitting method and no penalisation
(set iter = 1000 to obtain reliable results)
m = trophicSDM(Y, X, G, env.formula, iter = 20,

family = binomial(link = "logit"), penal = NULL,
mode = "prey", method = "stan_glm")

Evaluate the quality of model predictions on the training

8 G

Predict (fullPost = FALSE) as we used stan_glm to fit the model
but here we are only intested in the posterior mean
Ypred = predict(m, fullPost = FALSE)
format predictions to obtain a sites x species dataset whose
columns are ordered as Ynew
Ypred = do.call(cbind,

lapply(Ypred, function(x) x$predictions.mean))

Ypred = Ypred[,colnames(Y)]
evaluateModelFit(m, Ynew = Y, Ypredicted = Ypred)

Note that this is equivalent to `evaluateModelFit(m)`
If we fitted the model using "glm"
m = trophicSDM(Y, X, G, env.formula,

family = binomial(link = "logit"), penal = NULL,
mode = "prey", method = "glm")

Ypred = predict(m, fullPost = FALSE)
format predictions to obtain a sites x species dataset whose
columns are ordered as Ynew
Ypred = do.call(cbind, Ypred)
Ypred = Ypred[,colnames(Y)]

evaluateModelFit(m, Ynew = Y, Ypredicted = Ypred)
Note that this is equivalent to:

evaluateModelFit(m)

G Simulated environemntal covariates G

Description

Simulated environemntal covariates G

Usage

data(G)

Format

A simulated graph of trophic interactions G

Author(s)

Giovanni Poggiato

Examples

data(G)

global 9

global Global

Description

Declare global variables

loo.trophicSDMfit Computes an approximation of loo for the whole model

Description

Only works if method = ’stan_glm’. The global loo is computed by summing the loo of all the local
models (since the likelihood factorises, the log-likelihood can be summed)This is an implementation
of the methods described in Vehtari, Gelman, and Gabry (2017) and Vehtari, Simpson, Gelman, Yao,
and Gabry (2019).

Usage

S3 method for class 'trophicSDMfit'
loo(x, ...)

Arguments

x A trophicSDMfit object obtained with trophicSDM()

... additional arguments

Value

The value of the loo for the whole model

Author(s)

Giovanni Poggiato

Examples

data(Y, X, G)
define abiotic part of the model
env.formula = "~ X_1 + X_2"
Run the model with bottom-up control using stan_glm as fitting method and no penalisation
m = trophicSDM(Y,X,G, env.formula,

family = binomial(link = "logit"), penal = NULL, iter = 50,
mode = "prey", method = "stan_glm")

brms::loo(m)

10 plot.SDMfit

plot.SDMfit Plots the regression coefficients of a local model

Description

Plots the regression coefficients of a local SDMfit model

Usage

S3 method for class 'SDMfit'
plot(x, level = 0.95, ...)

Arguments

x A SDMfit object, typically obtained with trophicSDM() and available in the field
$model of a trophicSDMfit object

level the confidence level of the confidence intervals

... additional arguments

Value

A plot of the regression coefficients of the fitted local SDM

Author(s)

Giovanni Poggiato

Examples

data(Y, X, G)
define abiotic part of the model
env.formula = "~ X_1 + X_2"
Run the model with bottom-up control using stan_glm as fitting method and no penalisation
(set iter = 1000 to obtain reliable results)
m = trophicSDM(Y, X, G, env.formula, iter = 50,

family = binomial(link = "logit"), penal = NULL,
mode = "prey", method = "stan_glm")

Plot species Y6

plot(m$model$Y6)

plot.trophicSDMfit 11

plot.trophicSDMfit Plots the regression coefficients of a fitted trophicSDM model

Description

Plots the regression coefficients of a fitted trophicSDM model. A subset of species to be plotted can
be specified in the parameterspecies.

Usage

S3 method for class 'trophicSDMfit'
plot(x, species = NULL, ...)

Arguments

x A trophicSDMfit object obtained with trophicSDM()

species A vector of species names to be plot. If NULL (default), all species are plotted.

... additional arguments

Value

A plot of the regression coefficients of the fitted tropic SDM

Author(s)

Giovanni Poggiato

Examples

data(Y, X, G)
define abiotic part of the model
env.formula = "~ X_1 + X_2"
Run the model with bottom-up control using stan_glm as fitting method and no penalisation
(set iter = 1000 to obtain reliable results)
m = trophicSDM(Y, X, G, env.formula, iter = 50,

family = binomial(link = "logit"), penal = NULL,
mode = "prey", method = "stan_glm")

Plot just the first three species

plot(m, species = c("Y1","Y2","Y3"))

If species = NULL (default), all species are plotted.

12 plotG_inferred

plotG Plots the metaweb G

Description

Plots the metaweb G used to fit the trophicSDM model

Usage

plotG(tSDM)

Arguments

tSDM A trophicSDMfit object obtained with trophicSDM()

Value

A ggnet object

Author(s)

Giovanni Poggiato

Examples

data(Y, X, G)
define abiotic part of the model
env.formula = "~ X_1 + X_2"
Run the model with bottom-up control using stan_glm as fitting method and no penalisation
(set iter = 1000 to obtain reliable results)
m = trophicSDM(Y, X, G, env.formula, iter = 100,

family = binomial(link = "logit"), penal = NULL,
mode = "prey", method = "stan_glm")

plotG(m)

plotG_inferred Plot the metaweb G according to the inferred coefficients

Description

Plot the metaweb G with links colored accordingly to the inferred prey-predator regression coeffi-
cients of a fitted trophicSDM model. Plots the metaweb G, where each predator-prey link is colored
according to whether the related regression coefficient if inferred as positive (in red), negative (in
blue) or non-significant (dashed grey line) according to the confidence level specified in "level".
Estimates of the significant standardised regression coefficients are pasted on the links. Only works
if species are modeled as a function of their preys or predators without composite variables (i.e., the
function only works if tSDM is fitted with sp.formula = NULL and sp.partition = NULL)

predict.SDMfit 13

Usage

plotG_inferred(tSDM, level = 0.9)

Arguments

tSDM A trophicSDMfit object obtained with trophicSDM()

level The confidence level used to decide whether regression coefficients are non-
significant or not. Default to 0.9.

Value

A ggnet object

Author(s)

Giovanni Poggiato

Examples

data(Y, X, G)
define abiotic part of the model
env.formula = "~ X_1 + X_2"
Run the model with bottom-up control using stan_glm as fitting method and no penalisation
(set iter = 1000 to obtain reliable results)
m = trophicSDM(Y, X, G, env.formula,

family = binomial(link = "logit"), penal = NULL,
mode = "prey", method = "glm")

plotG_inferred(m)

predict.SDMfit Predicts with a local model

Description

Computes predicted values for a local model, i.e., a fitted SDMfit object This is sequentially called,
for each species, by the function trophicSDM.predict

Usage

S3 method for class 'SDMfit'
predict(object, newdata, pred_samples = NULL, prob.cov = TRUE, ...)

14 predict.SDMfit

Arguments

object A SDMfit object, typically obtained with trophicSDM() and available in the field
$model of a trophicSDMfit object

newdata A matrix containing both environmental covariates and the biotic variables that
the local model uses to predict the species distribution.

pred_samples Number of samples to draw from species posterior predictive distribution when
method = "stan_glm". If NULL, set by the default to the number of iterations/10.

prob.cov Only for presence-absence data. If set to FALSE, it gives back also predicted
presence-absences (which is then used by trophicSDM.predict to predict the
predators).

... additional arguments

Value

A list containing for each species the predicted value at each sites. If method = "stan_glm", then
each element of the list is a sites x pred_samples matrix containing the posterior predictive distri-
bution of the species at each sites. If prob.cov = TRUE, it returns a list containing:

• predictions.prob: Predicted probabilities of presence.

• predictions.bin: Predicted probabilities of presence.

Author(s)

Giovanni Poggiato and Jérémy Andréoletti

Examples

data(Y, X, G)
define abiotic part of the model
env.formula = "~ X_1 + X_2"
Run the model with bottom-up control using stan_glm as fitting method and no penalisation
(set iter = 1000 to obtain reliable results)
m = trophicSDM(Y, X, G, env.formula, iter = 100,

family = binomial(link = "logit"), penal = NULL,
mode = "prey", method = "stan_glm")

In order to predict non-basal species, we need to also provide
the predicted occurrences of its preys. Here we compute the probability of
presence of species Y4 at environemntal conditions c(0.5,0.5)
when its prey Y3 is present.
predict(m$model$Y4, newdata = data.frame(X_1 = 0.5, X_2 = 0.5, Y3 = 1), pred_samples = 10)

predict.trophicSDMfit 15

predict.trophicSDMfit Computes predicted values from the fitted trophicSDMfit model

Description

Computes predicted values from the fitted trophicSDMfit model at environmental conditions spec-
ified by Xnew. Once predictions have been obtained, their quality can eventually be evaluated with
evaluateModelFit().

Usage

S3 method for class 'trophicSDMfit'
predict(
object,
Xnew = NULL,
prob.cov = FALSE,
pred_samples = NULL,
run.parallel = FALSE,
verbose = FALSE,
fullPost = TRUE,
filter.table = NULL,
...

)

Arguments

object A trophicSDMfit object obtained with trophicSDM()

Xnew a matrix specifying the environmental covariates for the predictions to be made.
If NULL (default), predictions are done on the training dataset (e.g. by setting
Xnew = tSDM$data$X).

prob.cov Parameter to predict with trophicSDM with presence-absence data. Whether to
use predicted probability of presence (prob.cov = T) or the transformed presence-
absences (default, prov.cov = F) to predict species distribution.

pred_samples Number of samples to draw from species posterior predictive distribution when
method = "stan_glm". If NULL, set by the default to the number of iterations/10.

run.parallel Whether to use parallelise code when possible. Can speed up computation time.

verbose Whether to print advances of the algorithm

fullPost Optional parameter for stan_glm only. Whether to give back the full posterior
predictive distribution (default, fullPost = TRUE) or just the posterior mean, and
2.5% and 97.5% quantiles,

filter.table Optional, default to NULL, should be provided only if the users wants to filter
some species predictions. A sites x species matrix of zeros and ones.

... additional arguments

16 predictPotential

Value

A list containing for each species the predicted value at each sites. If method = "stan_glm", then
each element of the list is a sites x pred_samples matrix containing the posterior predictive distri-
bution of the species at each sites.

Author(s)

Giovanni Poggiato and Jérémy Andréoletti

Examples

data(Y, X, G)
define abiotic part of the model
env.formula = "~ X_1 + X_2"
Run the model with bottom-up control using stan_glm as fitting method and no penalisation
(set iter = 1000 to obtain reliable results)
m = trophicSDM(Y, X, G, env.formula, iter = 50,

family = binomial(link = "logit"), penal = NULL,
mode = "prey", method = "stan_glm")

We can now evaluate species probabilities of presence for the environmental conditions c(0.5, 0.5)
predict(m, Xnew = data.frame(X_1 = 0.5, X_2 = 0.5))
Obtain 50 draws from the posterior predictive distribution of species (pred_samples = 10)
using predicted presence-absences of species to predict their predators (prob.cov = TRUE)
Since we don't specify Xnew, the function sets Xnew = X by default
Ypred = predict(m, fullPost = TRUE, pred_samples = 10, prob.cov = FALSE)
We can ask the function to only give back posterior mean and 95% credible intervals with
fullPost = F

Ypred = predict(m, fullPost = TRUE, pred_samples = 30, prob.cov = FALSE)

If we fit the model using in a frequentist way (e.g. glm)
m = trophicSDM(Y, X, G, env.formula,

family = binomial(link = "logit"), penal = NULL,
mode = "prey", method = "glm")

We are obliged to set pred_samples = 1
(this is done by default if pred_samples is not provided)
In the frequentist case, fullPost is useless.
Ypred = predict(m, pred_samples = 1, prob.cov = FALSE)

predictPotential Predicts species potential niche

Description

Computes predicted values of the potential niches of species from the fitted trophicSDMfit model
at environmental conditions specified by Xnew. Predictions are obtained by setting preys to present
when mode = "prey" or setting predators to absent when mode = "predator".

predictPotential 17

Usage

predictPotential(
tSDM,
Xnew = NULL,
pred_samples = NULL,
verbose = FALSE,
fullPost = TRUE

)

Arguments

tSDM A trophicSDMfit object obtained with trophicSDM()

Xnew a matrix specifying the environmental covariates for the predictions to be made.
If NULL (default), predictions are done on the training dataset (e.g. by setting
Xnew = tSDM$data$X).

pred_samples Number of samples to draw from species posterior predictive distribution when
method = "stan_glm". If NULL, set by the default to the number of iterations/10.

verbose Whether to print advances of the algorithm.

fullPost Optional parameter for stan_glm only. Whether to give back the full posterior
predictive distribution (default, fullPost = TRUE) or just the posterior mean, and
2.5% and 97.5% quantiles.

Value

A list containing for each species the predicted value at each sites. If method = "stan_glm", then
each element of the list is a sites x pred_samples matrix containing the posterior predictive distri-
bution of the species at each sites.

Author(s)

Giovanni Poggiato and Jérémy Andréoletti

Examples

data(Y, X, G)
define abiotic part of the model
env.formula = "~ X_1 + X_2"
Run the model with bottom-up control using stan_glm as fitting method and no penalisation
(set iter = 1000 to obtain reliable results)
m = trophicSDM(Y, X, G, env.formula, iter = 100,

family = binomial(link = "logit"), penal = NULL,
mode = "prey", method = "stan_glm")

Obtain 100 draws from the posterior predictive distribution of species potential niche
(pred_samples = 50)
Since we don't specify Xnew, the function sets Xnew = X by default
Ypred = predictPotential(m, fullPost = TRUE, pred_samples = 50)
We can ask the function to only give back posterior mean and 95% credible intervals with
fullPost = FALSE

18 print.SDMfit

Ypred = predictPotential(m, fullPost = FALSE, pred_samples = 50)

#' We can now evaluate species probabilities of presence for the enviromental
conditions c(0.5, 0.5)
predictPotential(m, Xnew = data.frame(X_1 = 0.5, X_2 = 0.5), pred_samples = 50)

If we fit the model using in a frequentist way (e.g. glm)
m = trophicSDM(Y, X, G, env.formula,

family = binomial(link = "logit"), penal = NULL,
mode = "prey", method = "glm")

We are obliged to set pred_samples = 1
(this is done by default if pred_samples is not provided)
In the frequentist case, fullPost is useless.
Ypred = predictPotential(m, pred_samples = 1)

print.SDMfit Prints a SDMfit object

Description

Prints a SDMfit object

Usage

S3 method for class 'SDMfit'
print(x, ...)

Arguments

x A SDMfit object, typically obtained with trophicSDM() and available in the field
$model of a trophicSDMfit object

... additional arguments

Value

Prints a summary of the local SDM

Author(s)

Giovanni Poggiato

Examples

data(Y, X, G)
define abiotic part of the model
env.formula = "~ X_1 + X_2"
Run the model with bottom-up control using stan_glm as fitting method and no penalisation
(set iter = 1000 to obtain reliable results)
m = trophicSDM(Y, X, G, env.formula, iter = 100,

print.trophicSDMfit 19

family = binomial(link = "logit"), penal = NULL,
mode = "prey", method = "stan_glm")

m$model$Y1

print.trophicSDMfit Prints a fitted trophicSDM model

Description

Prints a fitted trophicSDM model

Usage

S3 method for class 'trophicSDMfit'
print(x, ...)

Arguments

x A trophicSDMfit object obtained with trophicSDM()

... additional arguments

Value

Prints a summary of the fitted trophic SDM

Author(s)

Giovanni Poggiato

Examples

data(Y, X, G)
define abiotic part of the model
env.formula = "~ X_1 + X_2"
Run the model with bottom-up control using stan_glm as fitting method and no penalisation
(set iter = 1000 to obtain reliable results)
trophicSDM(Y, X, G, env.formula, iter = 100,

family = binomial(link = "logit"), penal = NULL,
mode = "prey", method = "stan_glm")

20 SDMfit

SDMfit Fitting a single-species SDM

Description

SDMfit is used to fit a single species SDM, what we call a ’local model’ of trophicSDM. It returns an
object of class ’SDMfit’. Requires basically the same inputs of trophicSDM, with the requirement
to specify with the parameter ’focal’ the species that is modeled by the SDMfit.

Usage

SDMfit(
focal,
Y,
X,
G,
formula.foc,
sp.formula = NULL,
sp.partition = NULL,
mode = "prey",
method = "stan_glm",
family,
penal = NULL,
iter = 1000,
chains = 2,
verbose = TRUE

)

Arguments

focal the name of the species to be modeled

Y The sites x species matrix containing observed species distribution (e.g. presence-
absence).

X The design matrix, i.e. sites x predictor matrix containing the value of each
explanatory variable (e.g. the environmental conditions) at each site.

G The species interaction network (aka metaweb). Needs to be an igraph object.
Links must go from predator to preys. It needs to be a directed acyclic graph.

formula.foc The formula for the abiotic part of the species distribution model.

sp.formula (optional) It allows to specify a particular definition of the biotic part of the
model, e.g., using composite variables (e.g., richness), or an interaction of the
biotic and abiotic component. More details in ’Details’.

sp.partition (optional) a list to specify groups of species that are used to compute composite
variables, e.g., a species can be modeled as a function of the richness of each
group of preys. It has to be a list, each element is a vector containing the names
of species in the group.

SDMfit 21

mode "prey" if bottom-up control (default), "predators" otherwise. Notice that G needs
to be such that links point from predators to prey.

method which SDM method to use. For now the available choices are: "glm" (frequen-
tist) or "stan_glm" (full Bayesian MCMC, default). Notice that using "glm" does
not allow error propagation when predicting.

family the family parameter of the glm function (see glm). family=gaussian(link ="iden-
tity") for gaussian data or family=binomial(link = "logit") or binomial(link =
"probit") for presence-absence data.

penal (optional, default to NULL) Penalisation method to shrink regression coeffi-
cients.If NULL (default), the model does not penalise the regression coefficient.
For now, available penalisation method are "horshoe" for stan_glm, "elasticnet"
for glm and "coeff.signs" (prey coefficients are set to positive and predator co-
efficients to negative) for glm and stan_glm.

iter (for method="stan_glm" only) Number of iterations for each MCMC chain if
stan_glm is used

chains (for method="stan_glm" only) Number of MCMC chains (default to 2)

verbose Whether to print algorithm progresses

Details

"sp.formula" and "sp.partition" can be combined to define any kind of composite variables for the
biotic part of the formula. "sp.formula" can be :

• A string defining a formula as function of "richness". E.g., sp.formula="richness+I(richness)^2"
(species are modeled as a function of a quadratic polynomial of their prey richness), "I(richness>0)"
(species are modeled as a function of a dummy variable that is equal to 1 when at least
one species is present). Importantly, when group of preys (or predators) are specified by
"sp.partition", species are modeled as a function of the composite variable specified by "sp.formula"
for each of their prey groups.

• A more flexible option is to specify sp.formula as a list (whose names are species’ names) that
contains for each species the definition biotic part of the model. Notice that, in this case, the
function does not check that the model is a DAG. This allow to define any kind of composite
variable, or to model interactions between environmental covariates and preys (or predators).

Value

A list containing ’m’, a "SDMfit" object and ’form.all’, a string describing the formula of the SDMfit
object. The "SDM" fit object contains:

model The output of the function used to fit the SDM. E.g., an object of class "glm" is
method = "glm", an object of class "stanreg" if method = "stan_glm".

Y A numeric vector of standard errors on parameters

form.all The formula used to fit the SDM (both abiotic and biotic terms)
method, family, penal, iter, chains

The input parameters used to fit the SDM.

22 summary.SDMfit

sp.name The name of the species modeled

data The model.frame data.frame used to fit the model

coef The inferred coefficients (with credible intervals or p-values when available)

AIC The AIC of the local model

log.lik The log.likelihood of the local model

Author(s)

Giovanni Poggiato and Jérémy Andréoletti

Examples

data(Y,X,G)
Run a local model (i.e. a SDM) for species Y6
mySDM = SDMfit("Y6", Y, X, G, "~X_1 + X_2", mode = "prey",

method = "stan_glm", family = binomial(link = "logit"))
mySDM$m

summary.SDMfit Summary of a fitted SDMfit model

Description

Summary of a fitted SDMfit model

Usage

S3 method for class 'SDMfit'
summary(object, ...)

Arguments

object A SDMfit object, typically obtained with trophicSDM() and available in the field
$model of a trophicSDMfit object

... additional arguments

Value

Prints a summary of the local SDM

Author(s)

Giovanni Poggiato

summary.trophicSDMfit 23

Examples

data(Y, X, G)
define abiotic part of the model
env.formula = "~ X_1 + X_2"
Run the model with bottom-up control using stan_glm as fitting method and no penalisation
(set iter = 1000 to obtain reliable results)
m = trophicSDM(Y, X, G, env.formula, iter = 100,

family = binomial(link = "logit"), penal = NULL,
mode = "prey", method = "stan_glm")

summary(m$model$Y1)

summary.trophicSDMfit Summary of a fitted trophicSDM model

Description

Summary of a fitted trophicSDM model

Usage

S3 method for class 'trophicSDMfit'
summary(object, ...)

Arguments

object A trophicSDMfit object obtained with trophicSDM()

... additional arguments

Value

Prints a summary of the fitted trophic SDM

Author(s)

Giovanni Poggiato

Examples

data(Y, X, G)
define abiotic part of the model
env.formula = "~ X_1 + X_2"
Run the model with bottom-up control using stan_glm as fitting method and no penalisation
(set iter = 1000 to obtain reliable results)
m = trophicSDM(Y, X, G, env.formula, iter = 100,

family = binomial(link = "logit"), penal = NULL,
mode = "prey", method = "stan_glm")

summary(m)

24 trophicSDM

trophicSDM Fitting a trophic Species distribution model

Description

trophicSDM is used to fit a trophic species distribution model. Requires the species distribution data
Y (the sites x species matrix), explanatory variables X and a directed acyclic graph G containing
species interactions (i.e., the metaweb, with links going from predators to prey). The function fits
the distribution of each species as a function of their preys (with mode = "prey", by default) or
predators (if set mode = "predator").

Usage

trophicSDM(
Y,
X,
G,
env.formula = NULL,
sp.formula = NULL,
sp.partition = NULL,
penal = NULL,
mode = "prey",
method = "stan_glm",
family,
iter = 500,
chains = 2,
run.parallel = FALSE,
verbose = FALSE

)

Arguments

Y The sites x species matrix containing observed species distribution (e.g. presence-
absence).

X The design matrix, i.e. sites x predictor matrix containing the value of each
explanatory variable (e.g. the environmental conditions) at each site.

G The species interaction network (aka metaweb). Needs to be an igraph object.
Links must go from predator to preys. It needs to be a directed acyclic graph.

env.formula The definition of the abiotic part of the model. It can be :

• a string specifying the formula (e.g. "~ X_1 + X_2"). In this case, the same
environmental variables are used for every species.

• A list that contains for each species the formula that describes the abiotic
part of the model. In this case, different species can be modeled as a func-
tion of different environmental covariates. The names of the list must coin-
cide with the names of the species.

trophicSDM 25

sp.formula (optional) It allows to specify a particular definition of the biotic part of the
model, e.g., using composite variables (e.g., richness), or an interaction of the
biotic and abitic component. More details in ’Details’.

sp.partition (optional) a list to specify groups of species that are used to compute composite
variables, e.g., a species can be modeled as a function of the richness of each
group of preys. It has to be a list, each element is a vector containing the names
of species in the group. More details in ’Details’.

penal Penalisation method to shrink regression coefficients. If NULL (default), the
model does not penalise the regression coefficient. For now, available penal-
ization method are "horshoe" for method stan_glm, "elasticnet" for method
glm. It is also possible to constrain the sign of biotic coefficients (prey co-
efficients are set to positive and predator coefficients to negative) by setting
"coeff.signs" for methods glm and stan_glm.

mode "prey" if bottom-up control (default), "predators" otherwise. Notice that G needs
to be such that links point from predators to prey.

method which SDM method to use. For now the available choices are: "glm" (frequen-
tist) or "stan_glm" (full bayesian MCMC, default). Notice that using "glm"
does not allow error propagation when predicting.

family the family parameter of the glm function (see glm). gaussian(link = "identity")
for gaussian data. binomial(link = "logit") or binomial(link = "probit")
for presence-absence data.

iter (for "stan_glm" only) Number of iterations for each MCMC chain if stan_glm
is used

chains (for "stan_glm" only) Number of MCMC chains (default to 2)

run.parallel Whether species models are fitted in parallel (can speed computational up time).
Default to FALSE.

verbose Whether to print algorithm progresses

Details

"sp.formula" and "sp.partition" can be combined to define any kind of composite variables for the
biotic part of the formula. "sp.formula" can be :

• A string defining a formula as function of "richness", e.g., "richness+I(richness)^2"
(species are modeled as a function of a quadratic polynomial of their prey richness), "I(richness>0)"
(species are modeled as a function of a dummy variable that is equal to 1 when at least
one species is present). Importantly, when group of preys (or predators) are specified by
"sp.partition", species are modeled as a function of the composite variable specified by "sp.formula"
for each of their prey (or predator) groups.

• A more flexible option is to specify sp.formula as a list (whose names are species’ names)
that contains for each species the definition of the biotic part of the model. Notice that, in this
case, the function does not check that the model is a DAG. This allow to define any kind of
composite variable, or to model interactions between environmental covariates and preys (or
predators).

26 trophicSDM

Value

A "trophicSDMfit" object, containing:

model A list containing the local models (i.e. a SDM for each species). Each local
model is an object of class "SDMfit". See ?SDMfit for more informations.

Y A numeric vector of standard errors on parameters

form.all A list describing each species formula (both biotic and abiotic terms)

data A list containing all the data used to fit the model

model.call A list containing the modeling choices of the fitted model (e.g. method, penali-
sation...)

coef A list containing, for each species, the inferred coefficients (with credible inter-
vals or p-values when available)

MCMC.diag MCMC convergence metrics, only available for MCMC methods

AIC Model’s AIC

log.lik Model’s log.likelihood

Author(s)

Giovanni Poggiato and Jérémy Andréoletti

Examples

data(Y, X, G)
define abiotic part of the model
env.formula = "~ X_1 + X_2"
Run the model with bottom-up control using stan_glm as fitting method and no penalisation
Increase the number of iterations to obtain reliable results.
m = trophicSDM(Y,X,G, env.formula, iter = 50,

family = binomial(link = "logit"), penal = NULL,
mode = "prey", method = "stan_glm")

print(m)

Access local models (e.g. species "Y5")
m$model$Y5
coef(m$model$Y5)
The fitted model can be plotted with `plot(m)`

Fit a sparse model in the Bayesian framework with the horshoe prior

m = trophicSDM(Y,X,G, env.formula,
family = binomial(link = "logit"), penal = "horshoe",
mode = "prey", method = "stan_glm")

Fit frequentist glm
m = trophicSDM(Y,X,G, env.formula,

family = binomial(link = "logit"), penal = NULL,
mode = "prey", method = "glm")

With elasticnet penalty

trophicSDM_CV 27

m = trophicSDM(Y,X,G, env.formula,
family = binomial(link = "logit"), penal = "elasticnet",
mode = "prey", method = "glm")

Composite variables
See vignette 'Composite variables' for a complete introduction to the use of composite variables
Model species as a function of a quadratic polynomial of prey richness
m = trophicSDM(Y,X,G, env.formula,

family = binomial(link = "logit"), penal = NULL,
sp.formula = "richness + I(richness^2)",
mode = "prey", method = "glm")

m$form.all
Notice that for predators that feed on a single prey (with presence-absence data),
their richness and the square of their richness is exactly the same variable
In this case, `trophicSDM()` removes the redundant variable but prints a warning message

Model species as a function of a dummy variable saying whether they have at leaste one prey
m = trophicSDM(Y,X,G, env.formula,

family = binomial(link = "logit"), penal = NULL,
sp.formula = "I(richness>0)",
mode = "prey", method = "glm")

m$form.all

Define group of preys and model species as a function of the richness (with a quadratic term)
of these groups of preys separately

Species Y1 and Y2 belong to the same group, species Y3 and Y4 are both alone in their group and
species Y5 and Y6 form another group
sp.partition = list(c("Y1","Y2"),c("Y3"),c("Y4"), c("Y5","Y6"))

m = trophicSDM(Y,X,G, env.formula,
family = binomial(link = "logit"), penal = NULL,
sp.partition = sp.partition,
sp.formula = "richness + I(richness^2)",
mode = "prey", method = "glm")

m$form.all

trophicSDM_CV Compute K-fold cross-validation predicted values from a fitted troph-
icSDM model

Description

Once the CV predicted values are obtained, their quality can be evaluated with evaluateModelFit().

Usage

trophicSDM_CV(
tSDM,

28 trophicSDM_CV

K,
partition = NULL,
prob.cov = FALSE,
pred_samples = NULL,
iter = NULL,
chains = NULL,
run.parallel = FALSE,
verbose = FALSE

)

Arguments

tSDM A trophicSDMfit object obtained with trophicSDM()

K The number of folds for the K-fold cross validation

partition Optional parameter. A partition vector to specify a partition in K fold for cross
validation

prob.cov Parameter to predict with trophicSDM with presence-absence data. Whether to
use predicted probability of presence (prob.cov = T) or the transformed presence-
absences (default, prov.cov = F) to predict species distribution.

pred_samples Number of samples to draw from species posterior predictive distribution when
method = "stan_glm". If NULL, set by the default to the number of iterations/10.

iter For method = "stan_glm": number of iterations of each MCMC chains to fit the
trophicSDM model. Default to the number of iterations used to fit the provided
trophicSDMfit object

chains For method = "stan_glm": number of MCMC chains to fit the trophicSDM
model. Default to the number of iterations used to fit the provided trophicS-
DMfit object

run.parallel Whether to use parallelise code when possible. Default to TRUE. Can speed up
computation time

verbose Whether to print advances of the algorithm

Value

A list containing:

meanPred a sites x species matrix of predicted occurrences of species for each site (e.g.
probability of presence). With stan_glm the posterior predictive mean is return

Pred975, Pred025
Only for method = "stan_glm", the 97.5% and 2.5% quantiles of the predictive
posterior distribution

partition the partition vector used to compute the K fold cross-validation

Author(s)

Giovanni Poggiato

X 29

Examples

data(Y, X, G)
define abiotic part of the model
env.formula = "~ X_1 + X_2"
Run the model with bottom-up control using glm as fitting method and no penalisation
(set iter = 1000 to obtain reliable results)

m = trophicSDM(Y, X, G, env.formula, iter = 50,
family = binomial(link = "logit"), penal = NULL,
mode = "prey", method = "stan_glm")

Run a 3-fold (K=3) cross validation. Predictions is done using presence-absences of preys
(prob.cov = FALSE, see ?predict.trophicSDM) with 50 draws from the posterior distribution
(pred_samples = 50)
CV = trophicSDM_CV(m, K = 3, prob.cov = FALSE, pred_samples = 10, run.parallel = FALSE)
Use predicted values to evaluate model goodness of fit in cross validation
Ypred = CV$meanPred[,colnames(Y)]

evaluateModelFit(m, Ynew = Y, Ypredicted = Ypred)

Now with K = 2 and by specifying the partition of site
m = trophicSDM(Y, X, G, env.formula, iter = 50,

family = binomial(link = "logit"), penal = NULL,
mode = "prey", method = "glm")

partition = c(rep(1,500),rep(2,500))
CV = trophicSDM_CV(m, K = 2, partition = partition, prob.cov = FALSE,

pred_samples = 10, run.parallel = FALSE)
Ypred = CV$meanPred[,colnames(Y)]
evaluateModelFit(m, Ynew = Y, Ypredicted = Ypred)

X Simulated environmental covariates X

Description

Simulated environmental covariates X

Usage

data(X)

Format

A site x covariates matrix X

Author(s)

Giovanni Poggiato

30 Y

Examples

data(X)

Y Simulated species distribution Y

Description

Simulated species distribution Y

Usage

data(Y)

Format

A site x species matrix Y, a site x covariates matrix X and a trophic interaction network G (object
igraph)

Author(s)

Giovanni Poggiato

Examples

data(Y)

Index

∗ datasets
G, 8
X, 29
Y, 30

buildFormula, 2

coef.SDMfit, 3
coef.trophicSDMfit, 4
computeVariableImportance, 5

evaluateModelFit, 7

G, 8
global, 9

loo.trophicSDMfit, 9

plot.SDMfit, 10
plot.trophicSDMfit, 11
plotG, 12
plotG_inferred, 12
predict.SDMfit, 13
predict.trophicSDMfit, 15
predictPotential, 16
print.SDMfit, 18
print.trophicSDMfit, 19

SDMfit, 20
summary.SDMfit, 22
summary.trophicSDMfit, 23

trophicSDM, 24
trophicSDM_CV, 27

X, 29

Y, 30

31

	buildFormula
	coef.SDMfit
	coef.trophicSDMfit
	computeVariableImportance
	evaluateModelFit
	G
	global
	loo.trophicSDMfit
	plot.SDMfit
	plot.trophicSDMfit
	plotG
	plotG_inferred
	predict.SDMfit
	predict.trophicSDMfit
	predictPotential
	print.SDMfit
	print.trophicSDMfit
	SDMfit
	summary.SDMfit
	summary.trophicSDMfit
	trophicSDM
	trophicSDM_CV
	X
	Y
	Index

